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Let nonholonomic constraints defined by k - 1 equations of the form 

(p z.= 1 -+- 1, 1 + 2, _. . , k) 

be imposed on a mechanical system described by the generalized coordinates 41, qs,..-~ PI . 
the generalized forces Q1, Q2,..., Qii and with kinetic energy T = T(t, q, q*) . Equations 
of motion of such a system /Jl] can be written in the form 

-=N, 
d9&’ 

(h = 1, .I. ) 1) 

where the function R1* is obtained from 
K, = T’ - XT,,’ 

by replacing all qp’ with their expressions given by (1). i, e. 

RI’ (t, g,qa’) = RI (t, 9,. qa’. upaqa’ + up) 
x = 1, .._ , k 
p = 1 + 1 

, ... , > 
k 

Symbol To denotes the expression for the kinetic energy T, in which the generalized 
velccities qX’ are assumed fixed c 

We shall show that Eqs. (2) which can be described as reduced Nielsen’s equations f’23. 
are reducible to equations given by Voronets [3], while in the case of nonholonomic 

Chaplygin’s systems they reduce to the Chaplygin’s equations [4]. 
Indeed, the relation (4) implies that 

We shall use the identity 
d 3T i3T 8T 
z-r- aq; 

-- 
a% (x=i,...,k) 

and the obvious relations aT . 
8T -.A.-=- 

a4; af?, 

which, together with (3), yield 

d aT aR1 aT d aT dR1 aT ?b= i, .*. ) 1 \ 

-z T = aqi + %A ’ --=aQp’ dt aq; + aq, P=lfl,...,k / 

Let us now denote by T* the expression for the kinetic energy I’ after the substitution 
of Eqs. (l), i. e. 

T’ (6 q,, qnj = T (4 q,, qh’, aphqh’ + up) (IV 

From this we have 
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to Chaplygin’s equations 

895 

Differentiating (11) with respect to time and subtracting (12). we obtain 

d aT’ aT” d aT 
Tap,‘-ag,=-- dt aqA- 

aT 

+ aqp* 

which, together with (9) and (6). yields an expression allowing us to write the reduced 

Nielsen’s equations (2) in the form 

d c?T’ aT* 

in which they coincide with those obtained by Voronets. It is clear, that, in the case of 
Chaplygin’s systems, i. e. when ap s 0, the coefficients Q, the generalized forces and 
the kinetic energy are independent of the generalized coordinates qr+r, 4r+rr.-+, !?kl Eqs. 
(14) become the Chaplygin’s equations 

d aT’ 
--++ i,-&- dt aq; 

p=i+1 

(X = 1, 2, . . . ( I) 
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